Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 788: 136855, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36028005

RESUMO

Neuropathic pain (NP) arises as a direct consequence of traumatic spinal cord injury (SCI), which leads to devastating consequences for people suffering from this condition since no specific treatment has been defined. One relevant mechanism in generating painful stimuli involves the direct participation of reactive oxygen species (ROS) at the cellular and subcellular levels. Cannabidiol (CBD) is one of the two most crucial cannabinoid components of the cannabis plant and has been proposed as a potential treatment for NP. Its antioxidant, neuroprotective and anti-inflammatory properties have been documented. However, there is insufficient evidence regarding CBD as treatment of NP induced by SCI or the mechanisms that underlie this effect. In this study, we evaluated the antinociceptive effect of CBD as an acute treatment after the nociceptive behaviors characteristic of NP were established (hypersensitivity threshold and hypersensitivity response). Furthermore, the participation of oxidative stress was determined by lipid peroxidation (LP) and glutathione concentration (GSH) in female Wistar rats with SCI. Acute treatment with CBD (2.5-20 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH concentration in injured tissue 15 days after injury. The findings of this study suggest that the antinociceptive effect induced by CBD is regulated by reducing oxidative stress by decreasing the LP and increasing the concentration of antioxidant (GSH) defenses.


Assuntos
Canabidiol , Neuralgia , Traumatismos da Medula Espinal , Analgésicos/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Glutationa/metabolismo , Humanos , Estresse Oxidativo , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
2.
Spine (Phila Pa 1976) ; 46(19): 1287-1294, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517396

RESUMO

STUDY DESIGN: Prospective longitudinal experimental study. OBJECTIVE: We evaluate the effect of dapsone on tactile allodynia and mechanical hyperalgesia and to determine its anti-oxidant effect in a spinal cord injury (SC) model in rats. SUMMARY OF BACKGROUND DATA: Neuropathic pain (NP) as result of traumatic spinal cord injury is a deleterious medical condition with temporal or permanent time-course. Painful stimuli trigger a cascade of events that activate the N-methyl-D-aspartate (NMDA) receptor, inducing an increase in oxidative stress. Since there is no effective treatment for this condition, dapsone (4,4'diaminodiphenylsulfone) is proposed as potential treatment for NP. Its anti-oxidant, neuroprotective, and anti-inflammatory properties have been documented, however, there is no evidence regarding its use for treatment of NP induced by SCI. METHODS: In this study, we evaluated the anti-allodynic and anti-hyperalgesic effect of dapsone as preventive or acute treatment after NP was already established. Furthermore, participation of oxidative stress was evaluated by measuring lipid peroxidation (LP) and glutathione concentration (GSH) in rats with SCI. RESULTS: Acute treatment with dapsone (3.1-25 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH in the injured tissue 15 days after the injury was produced. On the other hand, preventive treatment (3 h post-injury, once daily for 3 days) with dapsone (3.1-25 mg/kg, i.p.) yielded similar results. CONCLUSION: The findings suggest that the anti-nociceptive effect of dapsone is regulated through the decrease of oxidative stress and the excitotoxicity is associated with the activation of NMDA receptors.Level of Evidence: N/A.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Animais , Dapsona/farmacologia , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Estresse Oxidativo , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
3.
Eur J Pain ; 25(8): 1839-1851, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33982314

RESUMO

BACKGROUND: Neuropathic pain (NP) after spinal cord injury (SCI) is a disabling condition, without an effective treatment. Hyperexcitability of N-methyl-D-aspartate (NMDA) receptors and oxidative stress have been reported to be associated with pain development. Amantadine, an NMDA receptor antagonist, has been proposed as a potential therapy for NP. However, its use has not been tested for NP after SCI. METHODS: To produce SCI, 120 female Wistar rats were used, a contusion injury to the T10 and T12 thoracic vertebrae was performed from heights of 6.25 mm and 12.5 mm. Nociceptive behaviour, was evaluated with the use of von Frey filaments for 31 days. The final products of lipid peroxidation (LP) and concentration of reduced glutathione (GSH) in the injured tissue were quantified by fluorescence spectrophotometry. The antinociceptive effect of the acute (15 days after the injury) and chronic (once daily for three days immediately after the injury) with amantadine (6.25-50 mg/Kg. I.p.) was determined. Finally, the LP and GSH were quantified in the injured tissue. RESULTS: Acute treatment with amantadine reduced nociceptive behaviour. Concomitantly, LP was decreased by Amantadine treatment while GSH increased in the injured tissue. Similar effects were observed with chronic treatment with amantadine. CONCLUSIONS: Data from this study suggested that the antinociceptive effects of amantadine treatment are modulated through oxidative stress and excitotoxicity reduction associated with N-methyl-D-aspartate receptors activation. SIGNIFICANCE: This study suggests that acute treatment with amantadine decreases hypersensitivity threshold and frequency of hypersensitivity response in a dose-dependent manner, in rats with SCI, by decreasing oxidative stress. Since amantadine is an easily accessible drug and has fewer adverse effects than current treatments for hypersensitivity threshold and frequency of hypersensitivity response, amantadine could represent a safe and effective therapy for the treatment of neuropathic pain. However, further research is required to provide evidence of the effectiveness and feasibility.


Assuntos
Amantadina , Neuralgia , Preparações Farmacêuticas , Traumatismos da Medula Espinal , Amantadina/farmacologia , Amantadina/uso terapêutico , Animais , Feminino , Estresse Oxidativo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...